
US. Department of Energy

Lab or ator y

Preprint
UCRL-JC-141942

PADRE: A Parallel
Asynchronous Data
Routing Environment

B. Gunney, D. Quinlan

This article was submitted to
Joint Association for Computing Machinery Java Grande-
International Scientific Computing in Object-Oriented Parallel
Environments Conference, Palo Alto, CA, June 2-4, 2001

January 8,2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov/bridge

Available for a processing fee to U S . Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: rer>orts@adonis.osti.eov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.pov
Online ordering: httm / /www.ntis.gov/orderinPr.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / / www.llnl.gov/ tid/Library.html

http://www.llnl.gov

PADRE: A Parallel Asynchronous Data Routing
Environment *

Brian Gunney Dan Quinlan
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
gunneyb,dquinlan@llnl.gov

Abstract

Increasingly in industry, software design and implementation is object-oriented, de-
veloped in C++ or Java, and relies heavily on pre-existing software libraries (e.g. the
Microsoft Foundation Classes for C++, the Java API for Java). A similar but more
tentative trend is developing in high-performance parallel scientific computing. The
transition from serial to parallel application development considerably increases the
need for library support: task creation and management, data distribution and dy-
namic redistribution, and inter-process and inter-processor communication and syn-
chronization must be supported.

PADRE is a library to support the interoperability of parallel applications. We
feel there is significant need for just such a tool to compliment the many domain-
specific application frameworks presently available today, but which are generally not
interoperable.

1 Introduction

Increasingly in industry, software design and implementation is object-oriented, developed
in C++ or Java, and relies heavily on pre-existing software libraries (e.g. the Microsoft
Foundation Classes for C++, the Java API for Java). A similar but more tentative trend is
developing in high-performance parallel scientific computing. The transition from serial to
parallel application development considerably increases the need for library support: task
creation and management, data distribution and dynamic re-distribution, and inter-process
and inter-processor communication and synchronization must be supported.

In large-scale scientific computing these issues have tended to be addressed in an ad-
hoc, per-application basis with relatively primitive support libraries, e.g. the MPI, PVM,
and PTHREADS libraries. For the management of distributed data there does not exist
even consensus-standard libraries or APIs. Efforts to provide specialized high-level libraries
and compiler support have been fragmented and disjoint and so have not integrated well.
As a consequence they have not given rise to a publicly-available cohesive software in-
frastructure that significantly facilitates the development of large-scale complex parallel

‘This work is funded (in part?) by the Department of Energy’s Division of Mathematical, Information,
and Computational Sciences under contract number ???.

1

mailto:gunneyb,dquinlan@llnl.gov

scientific applications. Again in the particular case of distributed data management, ex-
isting libraries tend to be force-fit to applications rather than the applications dictating
the characteristic of the data management component.

The DOE 2000 Scientific Template Library (SciTL) seeks to bring some order to the
chaos by providing a comprehensive infrastructure for the creation of the specialized par-
allel libraries needed for specific application areas. The emphasis is on the support of
parallel frameworks presently in use for both Accelerated Strategic Computing Initiative
(ASCI) and Energy Research (ER) projects within DOE, but SciTL will be publicly avail-
able and is expected to form a basis for work elsewhere. SciTL comprises four principal
libraries. These libraries provide mutually disjoint functionality, and though they are
nominally intended to be used together, an express goal is that there be no strict inter-
dependence-each may be used on its own. One of these libraries is PADRE, a library for
the management of distributed data.

The lack of any general-purpose distributed-data management facilities (henceforth
data distribution libraries motivated the development of libraries such as Multiblock
PART1 [?I, PGSLib [?, ?], and KeLP [?, ?]. At this level of abstraction (unlike at the
PVM/MPI level) it appears unreasonable to hope for a single satisfactory solution because
of widely differing distribution and communication requirements, sometimes even within
a single application or parallel library.

The sophistication of distributed-data management libraries (or distribution libraries)
is such that it behooves the parallel application or library designer to use existing libraries
rather than build them from scratch. Unfortunately, their interfaces are of sufficient com-
plexity that the use of more than one such library, or offering the user the choice of
distribution library to be used, will almost certainly greatly complicate the parallel library
code, particularly in the former case wherein the same data may be alternately or even
simultaneously be ‘managed’ by more than one distribution library.

2 PADRE

The express purpose of PADRE is to provide comprehensive support for the distribution
of data and the communication between different distributions of data, for both shared
and distributed memory machines, and for both SPMD and MIMD execution models.
While PADRE was not intended to be a mechanism for communication between separate
applications (this type of functionality is the goal of other work [?I) there is at least one
current effort to use it in support communication between disparate applications [?I.

Three primary considerations have guided the design of PADRE. One is to provide
functionality at a well-defined level of conceptual abstraction, in other words, to not at-
tempt to be monolithic all-in-one data-distribution ‘solution’. In practice PADRE operates
on top of various lower-level libraries. The second is that PADRE be abstract with respect
to several aspects of the user’s (or more likely, a more specialized library’s) data and the
details of its distribution. The third is that PADRE provide high-level services without
artificially constraining the user, that is, not restrict user access to the libraries on which
PADRE depends, yet not require the user to work directly with, or even be aware of, these
underlying libraries. In the same spirit, PADRE does not attempt to wrest control of the
user’s data-the user retains full control over the allocation and manipulation of the data

2

independently of PADRE.
Data distribution. PADRE is abstract with respect to several aspects of data dis-

tribution, notably the elementary type (e.g. int, float, or arbitarily complex structures),
structure (e.g. arrays, particles), distribution (e.g. as elementary data elements, blocks
or other structures of such elements), Object-oriented design, implementation using C++,
and the use of the C++ class template mechanism gives the desired generality and perfor-
mance.

Data distributions and alignment schemes are supported for both algorithm-based and
table-based distributions-though the algorithm-based may be more efficient, table-based
distributions permit a greater level of specification for support of sophisticated alignment
of data. The implementation of distribution mechanisms is separate from PADRE itself;
a key feature of PADRE is the ability to use multiple distribution mechanisms simultane-
ously with transparent translation between them. The choice of a particular distribution
mechanism for a particular data set may be directly specified by the user, or determined
by PADRE on the basis of user-supplied specifications or constraints on the data layout.

Current implementations of PADRE take advantage of existing specialized distribu-
tion libraries that are publicly available, for example, the Multiblock PART1 library from
University of Maryland [?I, the parallel gather-scatter library PGSLib from Cambridge
Power Computing Associates [?I, and KeLP from the San Diego Supercomputing Center
[?I. PADRE is designed to make the addition of distribution libraries a minor task. Thus,
more generally, we anticipate that PADRE will be used as a test-bed for evaluating new
distribution schemes; alternation of data distribution libraries would be transparent to
applications.

Translation between distribution mechanisms is achieved by identifying a partial order-
ing of the mechanisms and guaranteeing that every pair of mechanisms has a lower bound
(that is, a distribution at least as general as either). This strategy allows the number of
translations mechanisms to be linear, rather than quadratic, in the number of distribution
mechanisms. More efficient and sophisticated mechanisms are planned for future work.

Communication. PADRE supports communication via communication schedules
that are generated by the distribution library. Communication schedules may be exe-
cuted externally to PADRE, typically by the runtime system. Besides modularizing the
design, this allows the possibility of communications to be externally optimized with re-
spect to relevant criteria such as the nature of a particular architecture or the number
of communication events. PADRE is also independent of the underlying communication
mechanism, e.g. MPI or PVM.

Schedules are provided for block-type transfers. Additional work supports
unstructured-type communications as well; such unstructured communication support is
a part of the parallel indirect addressing support required by the software frameworks.
Unstructured communication within PADRE uses the PGSLib.

3 Overview of the design of PADRE
Even within PADRE distinct levels of conceptual abstraction are realized by a hierarchy
of three principal classes. The need and justification for these particular abstractions is
perhaps not self-evident but is born of considerable work in OVERTURE and POOMA

3

for which PADRE is the next evolutionary step. These three classes are briefly described
following.

0 PADREDistribution. The most abstract level is embodied by the
PADREDistribution, which encodes such size-independent information as how the
data may be decomposed, characteristics of ghost boundaries (local cached data),
and axis-based descriptions for data domains that support them.

0 PADRERepresentation. The intermediate level is embodied by the
PADRE-Representation, which encodes the actual size of a data set, but is not asso-
ciated with a particular data set. It also handles abstract communication schedules
that are independent of a particular data set. A PADRE-Distribution may be shared
by several PADRE-Representation.

0 PADREDescriptor. The most concrete level is embodied by the
PADRE-Descriptor, instances of which are in one-to-one correspondence with
data sets. It handles, for example, concrete communication schedules. A
PADRERepresentation may be shared by several PADRE-Descriptors.

The distribution libraries must provide an analogous three-level interface. In practice
distribution libraries do not come so equipped; we have successfully provided them with
appropriate ‘wrappers’.

The principal PADRE classes are class templates parameterized by three user-defined
classes, UserDomain, UserLocalDescriptor, and UserCollection. The UserDomain is effec-
tively a description of the domain in which the data lives or may be broken up into. The
UserLocalDescriptor contains a UserDomain object and a pointer to the user’s data. It
provides features needed for the user to exercise optional features of PADRE, for example,
allocation of data by PADRE. The UserCollection is the user’s class to be distributed, for
example the prototypical array class.

4 PADRE in Practice

In managing the destribution of data PADRE has a special role in dynamic applications.
Dynamic applications in a parallel environment require dynamic redistribution of data
throughout the computation. One of the most complex examples of this is the use of
adaptive mesh refinement (AMR). Within an AMR application refinement regions are
added and deleted; through the process elements of the collection of grids (the adaptive
grid) may be migrated or redistributed to maintain load balance. The additional com-
plexity of parallel AMR applications lay in the interactions between the seperate grids of
the adaptive grid. The dynamic behavior precludes the possibility of having convenient
distributions that would simplify the operations between the many grids of an adaptive
grid. Communication schedules between grids are thus complex and dynamic. Alignment
between distributions are equally complex and must be available for efficient computations.

By sharing PADRE as a common manager for data distribution, OVERTURE and
(eventually) POOMA may much more readily share significant subcomponents. For ex-
ample, should an application using POOMA need a capability from OVERTURE such as
AMR or parallel indirect addressing this may be provided with little difficulty.

4

The typical structure of a complete application using PADRE is given in Figure 1; in
finer detail in Figure 2.

Distribution Library
e .g . Multiblock PARTI

I Communication Library (CommLib)

Figure 1: Gross structure of application using PADRE.

5 Results

PADRE has been successfully incorporated into A++/P++, using the Multiblock PARTI
distribution library, with no apparent performance penalty. Currently other distribution
libraries are being added and tested, and various optimizations, particularly with respect
to data caching, have been implemented. In general, we expect no performance penalty
from the use of PADRE over that of using any of the underlying distribution libraries.

6 Conclusion

Though PADRE supports only one aspect of the infrastructure for parallel libraries, it
is intended to neatly and completely encapsulate a particularly complex part of that in-
frastructure. Other than defining an API it places no constraints on the application or
framework using it. Since PADRE is a part of common infrastructure and leveraged by
more than one parallel framework, it can provide greater flexibility in the distribution of
data and in the use of that data (generation of complex communication schedules) than
can be readily justified within a single parallel library or framework addressing a specific
application area.

5

Multiblock-PART1 PGSLib Etc.

Communication

P ADRE-Communicat ion

PADRE
Communication \\\ ,Manager

Low-level application library (e.g. A++/P++)

Mid-level application library (e.g. OVERTURE)

High-level application library (e.g. AMR++)

I
I
I

High-level application

Figure 2: Fine structure of application using PADRE.

6

